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Abstract
Many applications require an understanding of an
image that goes beyond the simple detection and
classification of its objects. In particular, a great
deal of semantic information is carried in the re-
lationships between objects. We have previously
shown that the combination of a visual model and a
statistical semantic prior model can improve on the
task of mapping images to their associated scene
description. In this paper, we review the model
and compare it to a novel conditional multi-way
model for visual relationship detection, which does
not include an explicitly trained visual prior model.
We also discuss potential relationships between the
proposed methods and memory models of the hu-
man brain.

1 Introduction
The extraction of semantic information from unstructured
data is a key challenge in artificial intelligence. Object detec-
tion in images has improved enormously within the last years,
due to novel deep learning methods. However, the semantic
expressiveness of image descriptions that consist simply of a
set of objects is rather limited. Semantics is captured in more
meaningful ways by the relationships between objects. In
particular, visual relationships can be represented by triples,
where two entities appearing in an image are linked through
a relation (e.g. man-riding-elephant, man-wearing-hat). Due
to the cubic combinatorial complexity of possible triples, it
is likely that not all relevant triples do appear in the train-
ing data, which makes training a predictive model difficult.
In this paper, we review our previously proposed approach
published in [Baier et al., 2017], which uses a Bayesian fu-
sion approach for combining visual object detection meth-
ods with a separately trained probabilistic semantic prior. In-
corporating a probabilistic semantic prior especially helps in
cases where the prediction of the classifier is not very certain,
and for the generalization to unobserved triples in the training

∗This paper is an abridged version, with some additional content,
of a paper titled ”Improving Visual Relationship Detection using Se-
mantic Modeling of Scene Descriptions” published at the ISWC-
2017.

set. Further, we propose a new conditional multi-way model
which is inspired by statistical link prediction methods. This
model does not include an explicitly trained prior of the se-
mantic triples, and is trained in a purely feedforward manner.
The prior is implicitly learned in the latent representations of
the entities. We conduct experiments on the Stanford Visual
Relationship dataset recently published by [Lu et al., 2016].
For the Bayesian fusion model we evaluate different model
variants on the task of predicting semantic triples and the cor-
responding bounding boxes of the subject and object entities
detected in the image. Our experiments show that including
the semantic model improves on the state-of-the-art result in
the task of mapping images to their associated triples. The ex-
periments further show that the conditional multi-way model
proposed in this paper, especially in the task of predicting un-
observed triples, achieves performance that is comparable to
the Bayesian fusion model.

2 Background and Related Work
In this section, we discuss the most important background and
related work for visual relationship detection.

2.1 Visual Relationship Detection
Visual relationship detection is concerned with the problem
of detecting objects and their relationships in images. Ex-
tracting triples, i.e. visual relationships, from raw images is
a challenging task, which has been a focus in the Semantic
Web community for some time, e.g. [Bloehdorn et al., 2005;
Serafini et al., 2017] and recently also gained substantial at-
tention in mainstream computer vision [Sadeghi and Farhadi,
2011; Lu et al., 2016; Zhang et al., 2017]. In the approach
from Lu et al. [Lu et al., 2016], a Region Convolutional Neu-
ral Network (RCNN) for detecting and classifying objects in
the image was used. Given a pair of objects, their relation-
ship is predicted using another Convolutional Neural Net-
work (CNN). The prediction is combined with a prior based
on the word embeddings of the objects and the relationships.
Baier et al. [Baier et al., 2017] have used the same RCNN,
but have replaced the word embedding model with a learned
probabilistic semantic model. This model will be reviewed in
Section 3.1. More recently, Zhang et al. [Zhang et al., 2017]
have applied the translational embedding model [Bordes et
al., 2013] for the task of visual relationship detection.
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Figure 1: The procedure of deriving a list of triples given an image. The last step differs for the two proposed models.

2.2 Semantic Tensor Models
A number of statistical models have been proposed for mod-
eling graph-structured knowledge bases, often referred to as
knowledge graphs. A knowledge graph G consists of a set of
triples G = {(s, p, o)i}Ni=1 ⊆ E×R×E . The entities s, o ∈ E
are referred to as subject and object of the triple, and the re-
lation between the entities p ∈ R is referred to as predicate
of the triple.

Link prediction methods can be described by a function
θ : E × R × E → R, which maps a triple (s, p, o) to a
real-valued score, which is a measure for the likelihood of
the triple being true. Most recently developed link prediction
models learn a latent representation, also called embedding,
for the entities and the relations. In the following we describe
the link prediction methods, which are used in this paper.

DistMult: DistMult [Yang et al., 2014] scores a triple by
building the tri-linear dot product of the embeddings, such
that

θ(s, p, o) = 〈as, rp, ao〉 (1)
where as, rp, ao ∈ Rd are latent vector representations for
subject, predicate, and object, and 〈·, ·, ·〉 denotes the dot
product of multiple vectors. The dimensionality d of the em-
beddings, also called rank, is a hyperparameter of the model.

ComplEx: ComplEx [Trouillon et al., 2016] extends Dist-
Mult to complex-valued vectors for the embeddings of both,
relations and entities. The score function is

θ(s, p, o) = Re(〈as, rp, ao〉) (2)
where as, rp, ao ∈ Cd are complex-valued vector representa-
tions of subject, predicate and object. Re(·) denotes the real
part of a complex number and · denotes the complex conju-
gate.

Multiway NN: The multiway neural network [Dong et al.,
2014; Nickel et al., 2016] concatenates all embeddings and
feeds them to a neural network of the form

θ(s, p, o) = βT tanh (W [as, rp, ao] + b1) + b2 (3)
where [·, ·, ·] denotes the concatenation of the embeddings
as, rp, ao ∈ Rd. The prediction is derived using a Mulilayer
Perceptron with the weight matrix W ∈ R3d×z , the weight
vector β ∈ Rz , and the biases b1 ∈ Rz, b2 ∈ R.

RESCAL: The tensor decomposition RESCAL [Nickel et
al., 2011] learns vector embeddings for entities and matrix
embeddings for relations. The score function is

θ(s, p, o) = as ·Rp · ao (4)

with · denoting the dot product, as, ao ∈ Rd and Rp ∈ Rd×d.

2.3 Image Classification and Object Detection
The Region Convolutional Neural Network (RCNN) [Gir-
shick et al., 2014] is a standard approach for detecting objects
in images. It uses a selective search algorithm for getting can-
didate regions in an image. The RCNN algorithm then rejects
most of the regions based on a classification score. As a re-
sult, a small set of region proposals is derived. Convolutional
Neural Networks (CNNs) have become the standard approach
for classifying images. CNNs apply convolutional filters in
a hierarchical manner to an image. In this work, we use a
specific CNN network architecture, which is called VGG-16
[Simonyan and Zisserman, 2014]. It consists of 16 convolu-
tional layers and two dense output layers. The output of the
second last layer of the network can be considered as a latent
representation of the input image.

3 Modelling Visual Relationships
In this section, we present two different models for the task
of visual relationship detection, both combining semantic ten-
sor models and object detection in different ways. Figure 1
shows the processing pipeline for both models. Both assume
that object candidate boxes are provided by an RCNN model.
The goal is to predict the most likely triple (s, p, o) for each
pair of subject/object candidate boxes (is, io). We define the
union of the regions is and io as ip. The extracted triples
then consist of two visual concepts s, o and their relationship
p. This is different to knowledge graphs where the relations
are typically not modelled on the concept level, but on the
instance level. Nevertheless, the link prediction methods de-
scribed in Section 2.2 can be applied to visual concepts, as
well.

3.1 Bayesian Fusion Model
In this model, we derive predictions from two different
CNNs, one modelling p(s|is) and p(o|io), and the other one
modelling p(p|ip). We combine these visual models with



Task Phrase Det. Rel. Det. Predicate Det. Triple Det.

Evaluation R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. V [Lu et al., 2016] 2.61 2.24 1.85 1.58 7.11 7.11 2.68 2.30

Lu et al. full [Lu et al., 2016] 17.03 16.17 14.70 13.86 47.87 47.87 18.11 17.11

Conditional Multiway Model 17.71 15.79 15.37 13.72 47.93 47.62 18.53 16.47

RESCAL Prior 19.17 18.16 16.88 15.88 52.71 52.71 20.23 19.13
MultiwayNN Prior 18.88 17.75 16.65 15.57 51.82 51.82 19.76 18.53

ComplEx Prior 19.36 18.25 17.12 16.03 53.14 53.14 20.23 19.06

DistMult Prior 15.42 14.27 13.64 12.54 42.18 42.18 16.14 14.94

Table 1: Results for visual relationship detection. We report Recall at 50 and 100 for four different validation settings.

a tensor model serving as a semantic prior p(s, p, o) in a
Bayesian way. We assume the joint distribution of all in-
volved variables to factor as

p(s, p, o, is, ip, io) ∝ p̃(s, p, o) · p̃(is|s) · p̃(ip|p) · p̃(io|o) (5)

with p̃ denoting unnormalized probabilities. We can divide
the joint probability of Equation 5 into two parts. The first
part is p̃(s, p, o), which models semantic triples. The second
part is p̃(is|s) · p̃(ip|p) · p̃(io|o), which models the visual part
given the semantics. The semantic prior is modelled as

p̃(s, p, o) = exp(θ(s, p, o)), (6)

where θ is a semantic tensor model as described in Section
2.2 and exp is the activation function for Poisson regression.
An advantage is that the semantic model can be trained sepa-
rately from the visual model using only the absolute frequen-
cies of triples in the training data. As we are predicting count
data, we train the model using a Poisson cost function.1 The
semantic model and the visual models are combined by ap-
plying Bayes rule to Equation 5, such that

p(s, p, o|is, ip, io) ∝ p̃(s, p, o) ·
p̃(s|is) · p̃(p|ip) · p̃(o|io)

p̃(s) · p̃(p) · p̃(o)
.

(7)
The additional terms of the denominator p̃(s), p̃(p), p̃(o) are
derived through the marginalization of p̃(s, p, o) and a Lapla-
cian smoothing. For each pair of bounding boxes, we pick the
triple with the highest probability.

3.2 Conditional Multiway Model
In this model, we derive for each pair of bounding boxes the
subject s and the object o by applying a VGG classifier to the
regions is and io. In a second step we then build a conditional
tensor model for p(p|s, o, ip). We parameterize the model as

p(p|s, o, ip) = softmax(W2 tanh(W1

[
as, ao, rip

]
+b1)+b2),

(8)
with as, ao ∈ Rd being latent vector representations for the
visual concepts, rip ∈ Rd being a latent representation vector

1Another sampling model would lead to a multinomial model,
which would only result in a different normalization of the distribu-
tion.

for the image patch ip, and [·, ·, ·] denoting the concatena-
tion operation. For as and ao the representations are opti-
mized in the learning procedure and stored in a lookup table.
For deriving a representation of the predicate region ip, we
model rip = Mhip , where hip is the activation of the sec-
ond last layer of a VGG network with the image region ip
as input. The matrix M maps the latent representation of
the VGG network to a vector with the rank of the multi-way
model. The probabilities for predicate p are derived by ap-
plying a Multilayer Perceptron with the additional parameters
W1 ∈ R3d×z,W2 ∈ Rz×|R|, b1 ∈ Rz, b2 ∈ R|R|.

To derive a single prediction for each pair of bounding
boxs, we pick the subject ŝ = argmax p(s|is), object ô =
argmax p(o|io), and predicate p̂ = argmax p(p|ip, ŝ, ô)
with the highest probabilities. The confidence score for the
triple (ŝ, p̂, ô), given an input region (is, ip, io) is calculated
as

p(ŝ, p̂, ô|is, ip, io) = p(ŝ|is) · p(ô|io) · p(p̂|ip, ŝ, ô). (9)

4 Experiments
We evaluate our proposed method on the recently published
Stanford Visual Relationship dataset.

Setting We compare the two models presented in this paper
and their variations, with the results from [Lu et al., 2016].
The settings are the same as in [Lu et al., 2016] and [Baier
et al., 2017]. In all settings a single triple is derived for each
pair of bounding boxes. In the first setting, which in [Lu et al.,
2016] is referred to as Phrase Detection, a triple with its cor-
responding bounding boxes is considered correctly detected,
if the triple is similar to the ground truth, and if the union
of the bounding boxes has at least 50 percent overlap with
the union of the ground truth bounding boxes. In Relation-
ship Detection, both the bounding box of the subject and the
bounding box of the object need at least 50 percent of overlap
with their ground truth. In Predicate Detection, it is assumed
that subject and object are given, and only the correct predi-
cate linking both needs to be predicted. In Triple Detection,
a triple is considered correct if it corresponds to the ground
truth, independent of the predicted bounding boxes.



Task Phrase Det. Rel. Det. Predicate Det. Triple Det.

Evaluation R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. V [Lu et al., 2016] 1.12 0.95 0.78 0.67 3.52 3.52 1.20 1.03

Lu et al. full [Lu et al., 2016] 3.75 3.36 3.52 3.13 8.45 8.45 5.39 4.79

Conditional Multiway Model 5.73 5.39 5.22 4.96 14.32 14.32 5.22 4.96

RESCAL Prior 6.59 5.82 6.07 5.30 16.34 16.34 6.07 5.30
MultiwayNN Prior 6.93 5.73 6.24 5.22 16.60 16.60 6.24 5.22

ComplEx Prior 6.50 5.73 5.82 5.05 15.74 15.74 5.82 5.05

DistMult Prior 4.19 3.34 3.85 3.08 12.40 12.40 3.85 3.08

Table 2: Results for the zero shot learning experiments. We report Recall at 50 and 100 for four different validation settings.

Results Table 1 shows the results for visual relationship de-
tection. The first row shows the results, when only the visual
part of the model is applied. This model performs poorly in
all four settings. The full model in the second row adds the
language prior to it, which drastically improves the results.
The Conditional Multiway Model outperforms the language
prior model in some settings and achieves very similar re-
sults in the others. In the last four rows we report the results
of the Bayesian fusion model, with different link prediction
methods. We see that the model performs consistently bet-
ter than the state-of-the-art method proposed by [Lu et al.,
2016]. Only DistMult is slightly worse, which might be due
to the fact that it assumes symmetric scores when subject and
object are exchanged.

Table 2 shows the results, when only evaluating triples
which have not been observed in the training data. This task
is much more difficult, as it requires the models to generalize
to these triples. Also in this experiment, including the seman-
tic model significantly improves the prediction. For the first
three settings, the best performing method, which is the Mul-
tiway Neural Network, almost retrieves twice as many cor-
rect triples, as the state-of-the-art model of [Lu et al., 2016].
These results clearly show that our model is able to infer also
new likely triples, which have not been observed in the train-
ing data. The Conditional Multiway Model achieves a perfor-
mance close to the Bayesian fusion models, although it does
not include a separately learned prior for the semantic triples.

5 Relationships to Perception and Memory
At a higher cognitive level, information which is ceaselessly
acquired by the visual system of the brain, needs to be in-
terpreted correctly. Goethe’s proverb might be quite fitting
for our proposed approach: ”You only see what you know”
since one can only perceive things for which we have an inter-
nal brain representation. This internal representation is used
by the perceptual system and by the main declarative mem-
ory systems, i.e., the episodic memory (about events we re-
member) and the semantic memory system (about facts we
know) [Tulving, 2002]. Perception even needs more: it needs
to generalize to novel entities on the class level, since a sub-
ject constantly encounters novel entities: The perceptual sys-

tem needs to be able to generalize to new scenes and needs
to generalize on the associations of new perceptual compo-
nents. According to the complementary learning system [Mc-
Clelland et al., 1995], the memory systems are the basis for
the brain to learn to generalize to new situations, a consoli-
dation process which might happen largely during sleep and
might involve the neocortex. Our work focuses on the gener-
alization after training the perceptual system for scene com-
prehension. Our approaches can be related to some of the
main current hypothesis about perception and memory. Many
groups favor the Bayesian brain hypothesis, which assumes
that the brain uses inherited and learned prior hypothesis to
understand and reason about the world ([Knill and Pouget,
2004] and [Griffiths et al., 2008] are two examples). Our
Bayesian fusion model fits precisely into this category. Its
tensor model provides a prior model which is quite power-
ful in supporting the perceptual pipeline. It is a very rich
prior compared to simple smoothness priors used in other ap-
proaches. In contrast, in the conditional multiway model the
prior is represented in the latent representations of entities
and weights in the feedforward neural network. The concep-
tual memory is formed implicitly in the end-to-end training
of the model. Cognitive models which are pursuing this ap-
proach have been proposed and studied in [Tresp et al., 2015;
2017; Tresp and Ma, 2016]. This approach is more in favor of
a theory which assumes that the brain, at least conceptionally,
is trained end-to-end with few clearly interpretable functional
modules.

6 Conclusion
We presented two approaches for visual relationship detec-
tion, which both include statistical semantic models. The first
approach, which originally has been published in [Baier et al.,
2017], combines standard computer vision methods with la-
tent variable models for link prediction. We proposed a prob-
abilistic framework, in form of a Bayesian fusion model, for
integrating both the semantic prior and the computer vision
algorithms into a joint model. The second approach uses a
conditional multi-way model, which is inspired by link pre-
diction methods. For the prediction of triples, which have not
been observed in the training data, the performance of the sec-



ond approach is on par with the first approach, as its structure
helps to generalize to unobserved triples, without including
a separately trained prior for the semantic triples. Both ap-
proaches form statistical models on the class level, and can
thus generalize to new images. This is in contrast to typical
knowledge graph models, where nodes correspond to specific
instances. In cognitive terms, the Bayesian fusion model can
more directly be related to the Bayesian brain hypothesis, as
being pursued by many research teams, whereas the condi-
tional multiway model is more closely related to the tensor
memory hypothesis [Tresp and Ma, 2016].
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